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Abstract: The paper presents a new approach to solving the problem of water quality control in
rivers. We proposed an intelligent system that monitors and controls the quality of water in a river.
The distributed measuring system works with a central control system that uses the intelligent
analytical computing system. The Biochemical Oxygen Demand (BOD) and Dissolved Oxygens (DO)
index was used to assess the state of water quality. Because the results for the DO measurement are
immediate, while the measurement of the BOD parameter is performed in a laboratory environment
over a period of several days, we used Artificial Neural Networks (ANN) for immediate estimation
BOD to overcome the problem of controlling river water quality in real time. Mathematical models
of varying complexity that represent indicators of water quality in the form of BOD and DO
were presented and described with ordinary and distributed-parameters differential equations.
The two-layered feed-forward neural network learned with supervised strategy has been tasked
with estimating the BOD state coordinate. Using classic ANN properties, the difficult-to-measure
river ecological state parameters interpolation effect was achieved. The quality of the estimation
obtained in this way was compared to the quality of the estimation obtained using the Kalman–Bucy
filter. Based on the results of simulation studies obtained, it was proved that it is possible to control
river aeration based on the measurements of particular state coordinates and the use of an intelligent
module that completes the “knowledge” concerning unmeasured data. The presented models can be
further applied to describe other cascade objects.

Keywords: river pollution; BOD; DO; artificial neural networks; state estimation; Kalman–Bucy filter;
quality control

1. Introduction

Contaminated water, partially or completely polluted as a result of household, industrial,
agricultural and other uses is commonly referred to as waste water. The largest part of the pollution in
waste water contains detergents, organic matters and oils. There are different approaches for removing
these contaminants or eliminating them. We can divide them into two groups of methods: artificial or
natural. The first method uses a set of filters: mechanic filters (for precipitation, flocculation, trapping
pollutants by organisms and by hyporheic sediment, sorption on mineral and organic particles),
chemical filters (for chemical degradation of pollutant, as abiotic oxidation and photo-oxidation) and
biochemical filters (biodegradation of pollutants, assimilation). The second method, also referred to as
self-purification, is a natural process of rivers, lakes or canals to recover the rate of dissolved oxygen
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values of the highest concentration of oxygen, which is one of the best indicators of water quality.
The self-purification process of water bodies are processes involving biological, chemical and physical
processes working simultaneously on biological pollutants, oxidizing them and increasing the amount
of dissolved oxygen. Self-purification of running waters is a set of natural processes that are present
in rivers and streams, enhanced by water turbulence that helps to increase the amount of oxygen to
dissolve in the water. The self-purification aspect and its control provide the leading motive of this
paper [1–4]. A problem of paramount importance to contemporary societies is determining how to best
retain the quality of stream water and maintain acceptable levels of dissolved oxygen concentrations
using a variety of pollution control activities. For the prediction of dissolved oxygen in a stream under
scenarios of interest, different heuristic and deterministic models have been applied in the past [5,6].
Neural networks are a proven and effective tool for diagnosing and controlling difficult-to-measure
processes where precise parametrization of a mathematical model is difficult or even impossible [7,8].
In recent years, ANN have found a number of applications in the area of water quality modeling.
A good review of the applications of ANNs in water quality modeling was summarized by the
American Society of Civil Engineering (ASCE) task committee on the application of Artificial Neural
Networks in hydrology, ASCE [9]. Recently, several methods involving intelligent soft computing
techniques have been proposed [10,11]. Taormina et al. proposed in [12] data-driven base-flow
separation-based modular models for the prediction of stream-flow discharge. Wu et al. proposed
in [13] the use of a modular artificial neural network for improving rainfall prediction. In addition,
the advantages of techniques with particle swarm optimizations for downstream river flow forecasting
have been proposed in [14]. Daily rainfall prediction has been modeled with a hybrid model
integrating artificial neural networks and support vector regression [15]. Based on the authors’
collective knowledge and previous experience in mathematical modeling of a river object [8,16–21]
and preliminary concepts presented in [22], we propose in the paper a novel intelligent system that
monitors and controls the quality of water in a river using ANN (Figure 1). The conceptual diagram
represents a river fragment and its banks, along which are placed telemetry stations, sampling points
Measurement Point (MP) and devices for aeration of monitored river sections.

Measuring sta�on telemetry

River in�owsRainfall

Measuring sta�on telemetry
Central control 

system

Compu�ng sta�on

Figure 1. Conceptual diagram of the river controlling and monitoring system.

The main river current is fed with lateral inflows, atmospheric precipitation and urban and
industrial inflows, which are the most frequent sources of biochemical pollution of the river.
When the river becomes contaminated, the only way to reduce the negative impact is to provide oxygen
directly to the water, consequently protecting the biological life of the river. The intelligent analytical
computing system module continuously monitors two basic BOD and DO water quality indicators.
These indicators are crucial for assessing the ecological status of the river water and possible
related hazards to living organisms. The results for the DO measurement are immediate, while the
measurement of the BOD parameter is difficult to achieve in real time as it is performed in a
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laboratory environment over a period of 5 to 28 days. The proposed monitoring system utilized
mathematical models of the river and performs the estimation of difficult-to-measure variables.
In this circumvention, we will utilize the measurement of dissolved oxygen to determine the value
of biochemical oxygen demand [23–26]. In the experimental part of the actual work, the object to
which the proposed system is applied is the Wislok river, located in the southeastern part of Poland.
Its hydrological profile and actual measurement data have been used to determine the value of control
and monitoring parameters implemented by the intelligent analytical computing system.

2. Methods

2.1. Mathematical Model of Water Quality

Mathematical biochemical models of levels of water pollution in rivers had various forms
depending on their application in order to present their components and dependencies. They are
used for the equation of quantitative description. These are (usually differential) equations that
link important values like input, output and variable states. Oxygen balance is the basis for water
contamination modeling; it is described by two indicators of water quality: BOD and DO. Biochemical
oxygen demand equals the amount of oxygen used by aerobic microorganisms over a specific time
period and conditions, for oxidation of organic compounds in water or waste-water [27]. This value
determines the content of biodegradable organic compounds. Dissolved oxygen is an indicator that
has a significant influence on chemical and biochemical processes in water. The indicator is also crucial
for organisms that create river ecosystems. Studies conducted by Streeter and Phelps in relation to
BOD and DO concentration in rivers are the basis for mathematical modeling of water quality [3].
The equations describe the biochemical decomposition of organic compounds, which runs according
to the first order differential equation of physical-chemical reaction kinetics. Dependency for a steady
volume of water and contamination takes the form of [19,22,28–32]:

dx1

dt
= −k1x1 + w1, x1 (t0) = x10, (1)

where x1 = (mg/L)—BOD concentration, t (day)—time, k1 (1/day)—reaction rate coefficient,
and w1 (mg/(L·day))—intensity of BOD pollution loads. The change of oxygen dissolved in water:

dx2

dt
= −k2x1 + k2 (x2N − x2) + a, x2N (t0) = x20N , (2)

where x2 = (mg/L)—DO concentration, t (time)—time, k2 (1/day)—rate coefficient of BOD influence
DO, k3 (1/day)—rate coefficient of oxygen absorption from air, x2N (mg/L)—oxygen content in water
saturation, a (mg/L·day)—intensity of oxygen absorption or consumption. In further considerations,
to present DO processes in a simpler way, DO deficit is used. Therefore, assuming that x2 is DO deficit
interpreted as:

x2 = x2N − x2s, (3)

where x2s represents value x2 from Equation (2). We get a dependency that describes the change of
DO deficit in time:

dx2

dt
= −k2x1 + k3x2 + a, x2 (t0) = x20. (4)

Equations (1) and (4) can be written in the form of vector:

dx
dt

= Ax + Bw, (5)

where A =

[
−k1 0
−k2 −k3

]
state matrix, x = col

[
x1 x2

]
—state vector (BOD and DO, respectively),

B—control matrix, and w—vector of external extortion and alternatively of controls. A river can be



www.manaraa.com

Water 2018, 10, 4 4 of 26

divided into smaller parts, interpreted separately. Taking into consideration longer segments of the
river, the outflow from one tank is the inflow of another (Figure 2).

Figure 2. The i-th river segment diagram.

Due to the nature of the phenomena in rivers [4], there is one direction of the transport of state
vector, the changes of which are imposed by the processes (self-purification, diffusion). Considering
the river divided accordingly into cascade segments where the time of river flow depends on the rate
of river flow. The current studies concern observations of a water section moving freely, affected by
side inflows. The length of river that results from the rate of flow can be adequately used instead of
the time axis.

2.1.1. Models with Distributed Parameters

Conducting an analysis of the state vector x (z, t) dependent on the time and length of the river,
Streeter–Phelps Equations (1) and (4) including mass balance are transformed into the first order
hyperbolic partial differential equations. BOD–DO mathematical model for i-th river segment is
described with the equation [22,33]:

∂

∂t
xi +

∂

∂t
Vixi = Axi + Bwri, (6)

with boundary conditions xi (0, t), xi (z, t0) where: xi—state vector of ith segment, t—time, z—length,

A—matrix of interactions, wri—distributed disturbance vector, and Vi =

[
vi 0
0 vi

]
—diagonal matrix

of river flow speed. The model considers the boundary conditions represented by: edge condition,
which describes the starting point of the considered segment in the time domain:

xi (0, t) = Mixi−1 (1, t) + wbi (t) + Rbiubi (t) . (7)

Matrix Mi represents the edge interrelations between single segments, vector wbi refers to the
edge disturbances. Control ubi has an impact only on a state vector coordinate x2 and on locating it at
the starting point of the river segment. Initial disturbance concerns the whole segment at a moment
t = t0 :

xi (z, t0) = xi0(z), i = 1, 2, ..., N. (8)
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The mathematical model described by the first order hyperbolic partial differential Equation (6)
represents a general approach. Using a different interpretation of this model, an equivalent description
can be used with the set of Streeter–Phelps equations (description in Section 2.2) [19–22].

2.1.2. Second Order Distributed Parameter Model

In water environments there are multiple factors that influence the water quality. The aim is to
attempt to consider all the conditions that have an impact on the self-purification process. The diffusion
is a factor that influences the water condition and is considered regarding spatial conditions such
as: length, width and depth. Using the Gauss–Ostrogradsky theorem, the model of diffusion can be
written in the form of a second order partial differential equation. The general form of the diffusion
equation is:

∂x
∂t
− div (D grad x) + δ = 0, (9)

in which x—state vector dependent on the time and spatial parameters, D—isotropic diffusion
coefficient, and δ—intensity of production or loss of shifted factor. Based on Equation (9), the river
state vector is considered dependent on time, length, width and depth taking into consideration the
river self-purification process, the diffusion equation is:

∂x
∂t
−
(

D
∂2x
∂z2

1
+ D

∂2x
∂z2

2
+ D

∂2x
∂z2

3

)
+ Ax + δ = 0, (10)

where z1, z2, z3 describe the coordinates of length, width, depth, A—state matrix. Assuming that the
change of diffusion along the variable spatial depth of water is negligibly small against the width and
length of body of water in the Equation (10), the last component can be excluded. Completing the
Equation (10) with the flow speed, an additional component appears:

∂x
∂t
−
(

D
∂2x
∂z2

1
+ D

∂2x
∂z2

2

)
+ V

∂x
∂z1

+ Ax + δ = 0, (11)

where V is a diagonal matrix that represents the flow speed in a given segment length. Solving the
above equations is possible in variable boundary conditions:

x (z1, t0) = fp1 (z1) , (12)

x (z2, t0) = fp2 (z2) , (13)

x (0, t) = fb (t) , (14)

where functions fp1, fp2, fb are known for particular coordinates.

2.2. Ordinary Differential Equations on Characteristics

The function that describes the values of state coordinate x in the space-time field is the solution
of hyperbolic partial differential equations. It means that values of this function are available for any
length of river and any period of time in this field. Using the idea of this solution and considering a
natural flow, a modified interpretation of the mathematical model of the river water pollution described
by the Equation (6), which, without losing the model accuracy, utilize the river self-purification process
was proposed. Positive values of the diagonal V matrix in Equation (6) causes Streeter–Phelps
equations to have common characteristics along which they become ordinary equations. The question
comes down to the analysis of river self-purification process along the characteristics (Figure 3) of
space-time field concerning the speed of BOD and DO pollution relocation.
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Figure 3. Characteristics in space-time domain.

The levels of water pollution in the river considered along the characteristics in the field z ∈ [0, 1]
and t ∈ [t0, tk], tk < ∞ become ordinary differential equations that represent respective characteristics.
The description of particular segments leads to the solution of a particular number of space-time field
characteristics. The characteristics of ith river segment are defined with dependency:

d
dt

zi (t) = vi (zi (t)) , (15)

the edge points of which meet the condition:

∫ t0,i+1

t0,i

vi (zi (t)) dt + z0i = 1, (16)

in which z0i ∈ [0, 1] is the initial coordinate in the moment t0i. For the same characteristic, the moment
t0i+1, determines the starting point in i+1-st segment. A set of line segments of the characteristic
covers the space-time field, to which further considerations regarding the issues of river state
estimation [20,32–35] will be related. Measurements continuous in time can be performed at specified
control points along the river. The considerations concern a boat drifting freely with the river current.
Shifting down a particular river, encountering the located control points, the measurements taken
for a given characteristic become discrete in time. Continuous measurements are described with the
equation [33,34]:

y (t) = x2 (t) + vp (t) , (17)

where x2—dissolved oxygen, and vp—measurement disturbance with Gaussian distribution.
Substituting t = tk, for k = 1, 2, 3, . . . , we obtain a measurement discrete equation:

y (tk) = Cx (tk) + vp (tk) , (18)

in which the state vector x (tk) = col
[

x1 (tk) x2 (tk)
]
, matrix C =

[
0 1

]
and measurement

disturbances are determined in discrete measurement moments tk.
The equation for i-th river segment can be written in the form of ordinary differential equations

on characteristics:
d
dt

x (zi (t) , t) = A (zi (t)) x (zi (t) , t) + Bwr (zi (t) , t) , (19)
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with initial condition: x (zi (t0) , t0) = x0 (zi0) for i = 1, 2, 3, . . .. The edge conditions disappear because
the characteristic concerns the whole field of considerations for the river [33,34].

2.3. River State Estimation with Kalman–Bucy Filter

The problem of state estimation x (t) comes down to the determination of the estimate x̂ (t) of the
current state, considering the condition for the minimization of distance between x (t) and its estimate
x̂ (t). It is reduced to the solution of differential equation [32–34]: d

dt x̂ (t) = Ax̂ (t) + K [y (t)− Cx̂ (t)],
where x̂ (t0) = x̂ (t) in which the enhancement filter coordinate KF is determined with the equation:

KF(t) = P(t)CTV−1
p , (20)

where V is the measurement error covariance, and estimate error covariance matrix P(t) is obtained
with a Riccati differential equation:

∂P(t)
∂t

= AP(t) + P(t)AT − P(t)CTV−1
p CP(t) + DWrDT , (21)

with starting condition P (t0) = P0. Matrix Wr is the covariance matrix of system disturbances wr that
are present in the Equation (19). Therefore, in order to obtain state estimate x̂ (t) first, it is necessary
to solve the Riccati Equation (21), next based on its solution to determine the enhancement filter
coordinate KF(t) (20) and finally solve the estimates Equation (19). When considering the issue of
estimate, “along the characteristics”, it is necessary to pay attention to the measurement equations that
become discrete in time. This results in the characteristic zi (t) encountering control points in zi1, zi2, ...,
which correspond with discrete time moments t1i, t2i, ..., tmi. As a result, the equation takes the form:

yi

(
ti
mi

)
= Cixi

(
zi

(
ti
mi

)
, ti

mi

)
+ vpi

(
ti
mi

)
, (22)

in which vpi (tmi) is Gaussian white noise with zero mean and covariance:

E
{

vpi (tk) vpi (tk)
T
}
= Vp (tk) δkl , (23)

where tk—measurement moment, E means the expected value operator, and δkl—Kronecker
function which:

δkl =

{
0, f or
1, f or

k 6= l,
k = l.

(24)

The proposed approach allows the mathematical model of river with centered parameters to
be described, but the questions that occur here are for the objects with distributed parameters that
are represented by time moments t1i, ..., tmi. In the estimation process that comprises continuous and
discrete measurements, two stages can be distinguished: filtration and prediction. The prediction
and filtration equations are obtained based on a Kalman–Bucy filter [33,36] in which measurement
continuity is included, assuming that: Vp (t 6= tk) = ∞. In the filtration stage estimates are obtained
in moment tk based on the estimates from previous time moment tk−1 and current measurements.
This process is described with the following equations:

x̂ (tk/tk) = x̂
(
tk
/

tk−1
)
+ KF (tk)

[
y (tk)− Cx̂

(
tk
/

tk−1
)]

, (25)

x̂
(
t0
/

t−1
)
= x̄0, (26)

P (tk/tk) = P
(
tk
/

tk−1
)
− KF (tk)CP

(
tk
/

tk−1
)

, (27)

P
(
t0
/

t−1
)
= P0, (28)
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KF = P
(
tk
/

tk−1
)
− CT

[
CP
(
tk
/

tk−1
)

CT + Vp (tk)
]−1

, (29)

where x̂ (tk/tk)—estimate in moment tk obtained based on the measurements y (t0) , ..., y (tk),
P (tk/tk)—estimate covariance error, and KF (tk)—enhancement filter coordinate. The prediction
is based on finding an estimate prior to the next measurement moment for t ∈ (tk, tk+1), taking the
estimates obtained in the filtration process for the initial values. The prediction is presented with
the equations:

d
dt

x̂ (t/tk) = A (tk) x̂ (t/tk) , (30)

x̂ (tk/tk) , (31)

d
dt

P (t/tk) A (tk)
T + A (tk) P (t/tk) + Wr, (32)

P (t/tk) , (33)

where x̂ (tk/tk), P (tk/tk)—estimate and covariance of estimation error estimated for t > tk,
and Wr—disturbance covariance wr [22,32,34]. The results relevantly depend on the accurate
determining of Stochastic Processes that include force signals. Practical experience shows that the
influence of weather conditions decides on the characteristics of the signals mentioned above. Thus,
it is advised to update these characteristics frequently for a more precise determination.

2.4. Model of Feed-Forward Neural Network

Artificial neural networks are already well established as a proven data analysis tool. In this
section, we briefly review supervised feed-forward neural network with the back-propagation learning
strategy. Figure 4 presents the exemplary two-layer ANN regarding typical Matlab (R2013a (8.1.0.604),
MathWorks, Natick, MA 01760-2098, United States) environment notation of the input pattern P and
output activations A ,respectively.

Figure 4. Two-layer neural network of feed-forward type. I and K—length of input and output vector
respectively, L—number of layers (2), Q—number of training pairs.

Input signal to the j-th neuron in the first layer:

e1(j) =
I

∑
i=0

w1(i, j)P(i), (34)



www.manaraa.com

Water 2018, 10, 4 9 of 26

where w1(i, j)—an element of W1 matrix connecting receptor layer with first layer of neurons,
i—receptor number, j—neuron number in the input layer, and P(i)—denotes i-th element of input
vector. For the sake of simplicity, shifting elements bl are included in the weights matrix. Neurons
activation in the first layer is expressed as a1(j) = h(e1(j)), where h(e1(j)) denotes the neuron transfer
function in the first layer. Similarly, the input signal to the k-th neuron in the second layer equals
e2(k) = ∑J

j=0 w2(j, k)a1(j), where w2(j, k) is an element of weight matrix W2 connecting the first and
second layer. Per analogy, the activation of neurons in second- output layer is expressed as:

a2(k) = h(e2(k)) = h

(
J

∑
j=0

w2(j, k)h

(
I

∑
i=0

w1(i, j)P(i)

))
. (35)

Usually, the sigmoid function is assumed to be the transfer function of a particular neuron because
of the simple numerical computation complexity of its first derivative:

h(e) =
1

1 + exp(−e)
∂h(e)

∂e
= h(e) (1− h(e)) . (36)

Other differentiable transfer functions like linear, logarithmic, hyperbolic tangent or Gaussian
can also be used. The set of weights w1(i, j) and w2(j, k), usually randomly generated at the beginning
of training process, does not provide required network knowledge functionality. The correction of
weights in the consecutive steps of training, known also as epochs, stands the classic task for the
network trained with supervisor. Such ANN architecture has the error function, also referred to as
cost function defined as follows:

E =
1
2 ∑

q

[
Tq(k)− h

(
J

∑
j=0

wq
2(j, k)h

(
I

∑
i=0

wq
1(i, j)Pq(i)

))]2

, (37)

where q—denotes the number of the consecutive input vectors with appropriate target output vector Tq.
This equation is referred to as least-square-method and its internal part might be modified according
to the class of the considered problem to be solved. The only two requirements that have to be satisfied
in general cases: internal expressions are differentiable and its common minimum exists, such that:
E→ 0 [37]. In recent works [17,18], we have observed that, in general cases, the order of derivatives
does not have to be of integer values and this advantage provides fluent modification of neuron
transfer function dynamics and its control during the ANN training process. The expected changes of
weights under the training procedure are expressed with the equation:

w(q+1) − w(q) = ∆w(q) = −η
∂E(q)

∂w
, (38)

where η—denotes the learning rate coefficient, usually in the range 0.1–1.5. At the experimental
part, we used the set of scripts from Matlab Neural Network Toolbox (Matlab NNET) library as well
as our own scripts with fluent modification neuron features functionality. The modified version of
backpropagation algorithm regarding momentum mechanism and reinforcement learning rule also
referred to as Quick Propagation (QuickProp) has been utilized as weight changing rule:

∆wNEW(i, j) = mc∆wOLD(i, j) + (1−mc)ηP(i)δ(j), (39)

where ∆wNEW and ∆wOLD denotes weights corrections in consecutive steps. In this circumvention,
momentum coefficient value equals mc = 0.1 and does not change during training process, opposite to
learning rate coefficient which changes with strategy: η = 1.05× η—if new computed error decrease
its value along training time, η = 0.7× η—otherwise. With this circumvention, the training process
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can be accelerated, preserving at the same time the ability of ANN to overcome the local minimum
traps in the error function space.

2.5. Artificial Neural Networks for Estimation Processes

By using information about the current state of the river and anticipated changes in river pollution
the monitoring and control system has been designed (Figure 5).
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Figure 5. Diagram of the monitoring and control system.

The purpose of the system is to monitor the quality of water, and, in the event of threats to its
lifeforms, respond accordingly by reducing the effects of emerging pollutants. Its primary function
is to predict the state of water quality in real time because of the ravages occurring when delayed
response to impurities leads to irreversible ecological changes in the river. The monitoring system
based on DO measurements and BOD estimation performed by neural networks is able to determine
the current values of river pollution indicators. The system also predicts their changes over an assumed
time interval. Using this information system generates appropriate controls for water aeration devices
in the river. This is a key mechanism to safeguard the life forms of the river and the water quality.
Using the Kalman–Bucy filter in the state estimation process requires knowledge of the characteristic
features of extortion processes such as disturbances effecting the system and measurements. It usually
involves great amounts of work and does not always lead to satisfactory results. Using artificial neural
networks is an alternative solution, which will support the execution of filtration process thanks to its
properties [8,17,38–41]. The studies employed feed-forward artificial neural networks and training
based on backpropagation algorithm. Taking into consideration the complexity of questions that
result from the measurement comparison of discrete and continuous objects, it is difficult to find one
structure of neural network that would generate estimates with satisfactory results. This is the reason
why two separate structures of artificial neural networks were used, as in the case of the filtration and
prediction process Figure 6. Obviously, these networks cooperate with one another according to the
algorithm of estimation that uses the filtration and prediction processes [4,21,22,32,34].
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Figure 6. Filtration and prediction system.

The value of estimates from the previous moment and the value of measurement were given at
the system input. In the ANN training process, we trained both network modules with the target
values of estimates obtained from the mathematical model. The execution of filtration process is the
first stage. The output signal of this part of the system are the estimates values in discrete measurement
moments which are the input signals for the second ANN structure in the prediction process. As a
result, the estimate values of BOD and DO are obtained, which are given with the feedback loop at
the system input. The structure of neural network for the filtration (see Figure 7) stems from the logic
of functioning of this process. The BOD and DO state estimate is obtained at the output in discrete
measurement moments. The input signals are the state estimates determined before the measurement
moments and the measurement signal. Thus, in the input layer, there are three receptors (two state
vector coordinates and measurement), and the output layer comprises two neurons that generate
estimates in measurement moments.

.
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^

x (t    )k+11
^

x (t )k2
^

x (t    )k+12
^

y(t )k

neuron 1

neuron 25

neuron 2

Figure 7. Artificial neural network (ANN) in the filtration process.

The amount of neurons in the hidden layer and the selection of activation function are the result
of experimental studies. The activation function in the hidden layer is sigmoid, and linear in the
output layer, in order not to restrict the values of output signals obtained from the network. It is
worth mentioning that such network architecture represents one characteristic for one execution of the
filtration process. In order to obtain state estimates for multiple characteristics, it is necessary at the
network input to give the current measurement and corresponding estimates values connected with a
particular characteristic. The prediction process runs interchangeably with the filtration process and
executes a task, which is to obtain BOD and DO estimate values obtained in the filtration process. In the
river control system [42], this process must closely cooperate with the filtration and deliver information
concerning the river condition between conducted measurements. The network architecture is similar
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to the filtration process, while in the input and output layer, there are only two neurons, and the
amount of neurons in the hidden layer can have different values. In the prediction in the hidden
layer a sigmoid activation function was used, and linear one was used in the output layer [22,32,34].
During the training of networks, different BOD and DO state values can be used. The neural network
diagram in the prediction process is presented in Figure 8.

The quality of estimates obtained in the filtration or prediction processes depends on the process
of network training during which the network changes the amount of neurons in the hidden layer.
The network training process has a significant influence on the results. When a great variety of cases of
model signals are taken into consideration, the generated estimates will correspond to the expectations.
The length of the training process affects the estimates obtained from the neural networks. When the
network training error is too large, it means that the network was not sufficiently trained, but it is
able to generate the estimates burdened with very large errors. In extreme cases the neural network
can distort the estimate process against its real state. It concerns large and sudden state changes
that can be caused by side inflows of high pollution level. Using the proposed approach, one can
obtain the river state estimate with the use of artificial neural networks. Appropriately designed ANN
architecture and properly conducted training processes will allow for obtaining a system that will
accurately, based on information from control points, estimate the BOD and DO change courses for
a particular river segment. The artificial neural networks prepared for the filtration and prediction
phase (see Figure 6) are used in the control system shown in Figure 5 in the intelligent filtration and
prediction module [17,18,37,38,41,43–48]. The above approach concerns the use of two ANNs working
in the system presented in Figure 6 and executing the filtration and prediction process. The creation
of an artificial neural network control system which functions parallel to generating of BOD and DO
estimates is a slightly different approach. ANN for BOD and DO estimate process is shown in Figure 9.
At the input BOD estimate and measurements vector are given similarly like in the case of DO estimate.
A two-layer neural network was used with 25 neurons in the hidden layer (Figure 7). In the case
of DO, ANN in the hidden layer can have fewer neurons against BOD, e.g., 10 neurons generating
correct results.

The whole set of individual learning vectors were split into two complementary sets: a training
set 80% and validation set 20%. At the preliminary test stage, a subset of input vectors was randomly
chosen from the set of input vectors to avoid data overfitting and maximize the ANN performance.
In the main part of the experiment Matlab’s default values, i.e., for training 70%, for testing 15% and
for validations 15% have been used.

.

.

.

.

.

.

x (t )k1
^

x (t/t    )k+11
^

x (t )k2
^

x (t/t    )k+12
^
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Figure 8. Artificial neural network in the prediction process.
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Figure 9. ANN in BOD and DO estimation process.

2.6. The Influence of Immeasurable State Coordinates on Optimal Object Control

The best system according to the chosen measurement standard is called the optimal system.
In order to accurately determine the optimal system, an automated regulation system comprising
regulator and object is used (Figure 10), which will be described with simultaneous equations in
the form:

ẋ = f (x, u, t) , (40)

where x—state vector of constituents x1, x2, . . . , xn, and u—control value vector of constituents u1, u2,
. . . , um, being continuous time function ranges.

Figure 10. Regulation system block diagram.

In real systems, the control values are usually limited. Generally, it is assumed that the control
values meet restriction in the form:

gi (ui, u2, ..., um) ≤ 0 f or i = 1, 2, 3, ..., (41)

where Du is the set of acceptable control values u ∈ Du

The quality indicator representing the optimum criteria, the goal of the function is in the form:

Q =
∫ tr

0
f0 (x, u, t) dt. (42)

Considering a linear object described with the differential Equation (5), we assume the quality
indicator as:

Q =
1
2

∫ tr

0

[
xT P (t) x + uT R (t) u

]
dt, (43)

where P (t)—nonnegative definite matrix of dimensions n× n, and R (t)—positive definite matrix of
dimensions m×m. Additionally, we assume that regulation time tr is demanded and the control vector
is not additionally restricted. The task will be to determine the control u, executing the differential
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Equations (5), which minimizes the quality indicators (43). The optimal control ū for the presented
task is determined as follows:

ū = ū (t) = R−1 (t) BT (t) P (t) x (t) (44)

where P (t)—symmetric matrix of dimensions n× n, which constitutes the solution for the Riccati
differential equation [22,32,49]. For the mathematical model of the object described with ordinary
differential Equation (5), we assume the quadratic coordinate of parameters quality as follows:

JQ =
∫

T

[
xT (t) Q̂x (t) + uT (t) Ru (t)

]
dt, (45)

where T ∈ [t0, tk], tk → ∞, x (t) , u (t)—are, respectively, n and m dimensional vectors of state and
control. Matrices A, B, Q̂, R, are assumed as constants, R > 0. River pollution levels control [25,50]
is performed by introducing a particular amount of oxygen directly into the body of water. In order
to select a type of control, the information specific to the current real river condition is required;
then, the control will be more accurate. DO measurements can be obtained in a quick and easy way,
but the obtaining of BOD value indicator is toilsome and requires laboratory conditions (BOD5 or
BOD20), where the indicator index presents the number of days necessary to obtain credible results
concerning the water polluted with organic compounds. This is why BOD values are estimated in the
estimation process. For the actual considerations concerning the polluted river, we seek the controls
described with the dependency:

u = kp1
(

xBOD − x̂BOD
)
+ kp2

(
xDO − x̂DO

)
, (46)

in which: kp1, kp2—are the regulator enhancement coordinates, xBOD, xDO—BOD and DO values,
x̂BOD, x̂DO—state estimate for BOD and DO [22,32,42,49,51].

3. Results

Using a river model based on the Streeter–Phelps equations, the kinetics of changes in biochemical
oxygen demand and dissolved oxygen deficit has been described. The experimentations for the river
described by Equations (1) and (4) has been performed according to the method described in Section 2.2.
We consider the contamination state of freely flowing water, which is described by the vector x(z, t).
Rivers have the ability to self-clean, i.e., as pollutants increase, the values of BOD and DO decrease
with the passage of time. The existence of a large deficit of dissolved oxygen at high BOD values is a
natural phenomenon, which in the case of high oxygen demand generates an increase in the DO deficit.
During the simulation experiments, among others, two emergency states were adopted that could
occur under real conditions (see Table 1). It was assumed that a system that responds appropriately
to such critical initial conditions will function properly in the real conditions of the standard levels
of pollutions in the river. It was noticed that BOD had a significant influence on DO. An interesting
phenomenon can be observed when inflowing pollutants have a value several times greater in mg/L.
As a result, the greatest oxygen deficit (the most dangerous conditions for living organisms) can be
observed after a few days and a several dozen kilometers away from the pollution inflow (see broken
red line, Figure 11).

Table 1. Initial values of parameters for the considered river section.

No. BOD (mg/L) DO (mg/L)
A

t (Day) v (km/Day)
k1 (Day−1) k2 (Day−1) k3 (Day−1)

1 35 −12 0.2 0.185 0.71 20 20
2 70 −7 0.2 0.185 0.71 20 20
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Figure 11. BOD top, and DO graph bottom.

Taking into consideration a long river, it can be conventionally divided, e.g., between large inflows,
and the part between them treated as a segment. The presence of large pollution inflows over a short
distance causes dangerous conditions in rivers for the lifeforms. The inflows cause a significant and
sudden change of BOD and DO values (see Figure 12). The observed changes in BOD and DO values
with respect to lateral inflows are summarized in Table 2.

Table 2. Selected parameters of the studied river section taking into account the three inflows.

Name Value

BOD (mg/L) 30

DO (mg/L) −12

Inflow I BOD (mg/L) 20
DO(mg/L) −5

Inflow II BOD (mg/L) 60
DO (mg/L) −9

Inflow III BOD (mg/L) 30
DO (mg/L) −6

A
k1 (day−1) 0.2
k2 (day−1) 0.185
k3 (day−1) 0.71

t (day) 20

v (km/day) 20

The largest DO deficit was noted when the third inflow occurred after ten days of observations.
The situation presented in Figure 12 shows the conditions of great oxygen deficiency for a long period
of time negatively affecting the water quality that can threaten the life of organisms in the water.
Analyzing the time courses, it can be observed that the largest oxygen deficit downstream “shifts”
with regard to the side inflows.
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Figure 12. Distribution of BOD and DO values taking into account the three lateral inflows.

Up to now, the actual state of water in the river described by the vector x(z, t) depends on the
length of the considered river section and time. In order to obtain a distribution of BOD and DO values
for any pair of independent variables z and t, we must solve the equation for many characteristics
taking into account the following boundary conditions:

• boundary conditions—at the beginning of the considered river section in the time domain
• initial conditions—at the moment t = t0 along the length of the considered river section.

Hyper-surfaces for BOD and DO, which significantly reflect real river conditions (see Table 3),
are the solution for the mathematical model with distributed parameters (6)–(8). Figure 13 presents
BOD and DO distributions for steady edge conditions, BOD and DO values decrease over the course
of time and length.

Table 3. Initial values for the spatial distribution of changes in BOD and DO.

BOD (mg/L) DO (mg/L)
A

t (Day) v (km/Day)
k1 (Day−1) k2 (Day−1) k3 (Day−1)

40 −5 0.2 0.185 0.71 10 20

(a) (b)

Figure 13. BOD (a) and DO (b) space-time distributions.
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A further experiment concerned both the changeable initial and edge conditions occurring in
the river. Real river conditions, such as variable initial conditions and occurrence of side pollution
inflow variable in time were taken into consideration. The results and pre-assumed initial values
of the parameters are shown in Figure 14. Extortions in the form of spikes in BOD and DO values
were observed at the initial point of the analyzed river segment and at the time when the side inflow
occurred. A sudden change of values remains for a particular period of time, and, after that, the values
return to the previous state. In the considered BOD ad DO space-time distribution, the spikes which
appear on the ”diagonal” decrease, which results from the river self-purification process. The pollution
inflow variable in time causes the first pollution spike below the first inflow, which runs parallel to the
second spike.
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Name Value
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DO (mg/L) −12
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DO (mg/L) −6

A
k1 (day−1) 0.2
k2 (day−1) 0.185
k3 (day−1) 0.71

t (day) 10
v (km/day) 20

Figure 14. BOD and DO distribution for various boundary conditions.

Speed has a significant influence on BOD and DO distribution. Carrying out experiment
for various values of river speed, a different location of pollution spread against the time axis
was observed in Figure 15:
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Figure 15. BOD distribution for range of water flow speed.

It was observed that the placement of pollution “marks” changes accordingly with the increase
of river flow speed. Therefore, the river speed is a crucial factor that causes variable placement of
pollutants in rivers. The higher the river speed, the distance of the location of pollution concentration
tends to increase. The self-purification process has too little time to reduce these values. The conducted
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studies showed little impact of the diffusion at equally high speeds of river flows. The diffusion was
excluded from further considerations [32,34,52–54].

Using the proposed intelligent filtration and prediction module, a number of experiments were
conducted for the investigated river object with two inflows. As a result BOD and DO distribution
was obtained, which shows a correct ANN reaction to the introduced estimate value (Figure 16).
As it can be observed, the values of estimates follow the BOD values. The training process has a
significant influence on the accordance of estimates according to the expected courses. In extreme
cases, the network significantly distorts estimates against their real values.

(a) (b)

Figure 16. BOD (a) and DO (b) state and estimates, respectively.

Using artificial neural network in the filtration and prediction phase improved the accuracy of
estimation process. Net gives more precise estimates of river state than classical Kalman’s filter. It is
easy to see from results of experiments that a neural network has also higher resistance to noises,
changes of distance between measurement stations and leap changes of pollution indicators’ values
(inflows). Moreover, applying the neural network allows a solution of knowledge of actual river
parameters. It is hard to determine in practice. In addition, by proper selection of learning data on
network answers can be improved in a specified range of pollution indicators values (Figure 17).

(a) (b)

Figure 17. Estimation of BOD (a) and DO (b) obtained from Kalman’s filter and ANN.

In Figure 18, plots representing the training, validation and testing data have been presented.
The dashed line in each plot represents the perfect result − outputs = targets. The solid line represents
the best fit linear regression line between outputs and targets. The R value is an indication of the
relationship between the outputs and targets for BOD and DO, respectively. Training data indicates a
relatively good fit of the ANN to river model. The validation and test results also show large R values.
The scatter plots show the existence of several points badly fitted by ANN.
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Figure 18. R values for the training, validation, testing and all data for BOD and DO
indexes, respectively.

The quality indicator for comparison of the accuracy of estimation by Kalman’s filter and artificial
neural network was applied as follows:

J =
tk

∑
i=t0

(Xi − X̂i)
2

n
, (47)

where X, X̂—state and estimate of river state, n—number of measurements. The mean squared error
is the accepted standard indicator for the performance evaluation, which we applied to assess the
proposed methods.

The obtained results, shown in the table above, encompasses quality coefficient values for
six different configurations of the river model. The results confirm that artificial neural network
gives more precise estimates of river state than classical Kalman’s filter. The quality indicators of
BOD are greater because there is no information from measurements about that pollution indicator.
Common analysis of Pearson coefficient (see Figure 19) and J indicator allows the assessment of the
quality of the methods used. For DO, the Pearson index has values closer to 1, which implies that both
methods achieved a similar performance level. On the other hand, for BOD, the lower values of the
J (see Table 4) indicator and the Pearson coefficient clearly indicate the higher efficiency of ANN in
relation to the Kalman filter in the estimation process.

Table 4. Values of quality indicator for Kalman’s filter and neural network.

BOD DO

Kalman’s Filter ANN Kalman’s Filter ANN

12.338 4.306 0.571 0.553
12.984 4.693 0.615 0.610
11.262 3.702 0.553 0.533
3.233 0.158 0.141 0.103
3.789 2.470 0.149 0.111
3.675 2.511 0.176 0.132
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Figure 19. Pearson correlation coefficient for BOD and DO quality indicators.

The river self-purification ability depends on biological processes that require a particular amount
of oxygen. Calculating the control on the basis of DO deficit would appear to be easy and precise.
Taking into consideration the character of the river processes, it may turn out to be insufficient as the
ignorance of BOD may cause unexpectedly low DO values. A series of conducted studies included
various conditions occurring in the river. Figure 20 shows a situation for the control including only
DO indicator. The initial values of the parameters used in the experiments are shown in Table 5, where:
kF1—filter gain coordinate for BOD, and kF2—filter gain coordinate for DO. The values of coefficients
kF1, kF2 (20) and kp1, kp2 (44) were determined on the basis of Riccati equations for the filter and for
the regulator assuming experimentally selected values of elements of the matrices of Wr, V and R,
P, respectively. These values were determined by means of actual measurements carried out for the
Wislok River in years 2011–2015. Modification of the parameter values resulting from the hydrological
profile of the river, and the obtained measurement accuracy resulting from the applied measuring
devices has a key impact on the final quality of monitoring and control of water quality.
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Figure 20. BOD distribution and estimate (a); DO including the control from DO (b).
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Table 5. The initial values of the parameters.

Name Value

BOD (mg/L) 30
DO (mg/L) −5

A
k1 (day−1) 0.2
k2 (day−1) 0.185
k3 (day−1) 0.71

t (day) 10
v (km/day) 20

kF1 −3.5
kF2 1
kp1 10
kp2 5

In the initial stage, DO deficit has low values and BOD high values. The control system that
functions based on DO indicator does not fully react to the pollution as DO level is normal. Over the
passage of time as a result of the increase in oxygen deficit caused by high BOD value, the system
generates the control, but it may turn out that it is too late for an effective reaction—large deficits of
DO still persist. The execution of control considering BOD indicator with a few days delay (laboratory
service) is useless. The BOD indicator values in the proposed system are obtained from the estimation
process. In order to precisely determine the amount of oxygen that is to be delivered to the body of
water, the BOD estimate is used. Moreover, it is worth emphasizing that delivering too small or large
amounts of oxygen is disadvantageous. The best solution is to calculate the controls based on BOD
and DO indicator. On the basis of the current BOD values, too large of a DO deficit can be determined,
and also precisely takes oxygen that must be introduced into the body of river. The conducted
simulation studies are presented below.

Introducing the control based on BOD and DO caused the system to react sufficiently early, which
prevented the development of unfavorable conditions in the river and allowed the maintenance of
DO values close to the assumed level. The experiments were carried out regarding various initial
conditions for BOD and DO values and the influence of enhancement coefficients kp1, kp2. Figure 21
shows the distribution of DO deficit with control for different values of kp1 i kp2 for initial conditions
BOD = 30 (mg/L) and DO = −6 (mg/L). The control occurred in three places due to the occurrence of
undesirable biological conditions in the river. Here, we see a significant influence of the value of the
gain factor of the regulator. Small amplification values cause a lesser response to the change in DO
during the control, leading to increased occurrence of hazardous conditions in the river.
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Figure 21. Cont.
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Figure 21. DO distribution with BOD and DO control (a); DO distribution with DO control (b).

The assumptions concerned the occurrence of large DO deficit at low BOD values and also a
situation when high BOD values appear in the river at small DO deficit (Figure 22). The control system
in the initial part of river segment based on DO indicator does not react to the appearing pollutants as
DO level is normal. By contrast, the system reaction, based on both indicators, is observable at the
very beginning of the river segment. As the distance and time pass, the oxygen deficit increases that
threatens biological life in the water. When the pollutants inflow, the system reacts and improves the
condition of water. The most satisfactory conditions in water are obtained during the use of BOD and
DO control.
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Figure 22. Control for DO.

4. Conclusions

In the paper, the use of artificial neural networks to solve the problem represented by BOD and
DO indicators has been presented. Neural networks were used to solve the problem of monitoring and
controlling water quality in the river in real time. The analysis and control process was carried out using
two BOD and DO indicators. The difficult–to-measure-in-real-time BOD indicator of water quality
was estimated by ANN in real time, enabling monitoring of the river in real conditions. The above
studies present a positive situation when the state estimation is used, especially when large amounts
of pollutants occur in various places. Traditional process-based modeling methods concerning the
biochemically polluted river control can provide less accurate estimations and predictions for water
quality parameters represented by BOD and DO indicators. The conducted experiments with the
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use of ANN proved that the river pollution level control concerning both indicators generates better
results than the control with the use of Kalman–Bucy filtering. Data generated by ANN for both
indicators minimizes the occurrence of dangerous conditions in the river that can lead to an ecological
disaster. Enhancement values are also significant during the control as they positively influence
the course of biochemical pollution decomposition. Traditional models need data sets that require
a long time to process and a large amount of input data that are often unknown. The use of the
Kalman–Bucy filter is associated with the need to know many parameters of the river and especially
the covariance of errors. In practice, it is difficult to estimate them, which leads to estimation errors.
The determination of these parameters also requires a large amount of calculation. The ANN is a
very effective technique that is capable of identifying complex nonlinear relationships between input
and output data when compared to classical control technique based on Kalman–Bucy filter. In the
paper, two approaches were proposed using ANN for the execution of estimation process. The former
represents a separate network system for BOD and DO estimation while the latter concerns two neural
networks that function in parallel. In both cases, correct results were achieved, but the second case
was more universal. Because of the fact that water quality forecast can be simply affected by external
environment, we observed that trained networks sometimes produced results that greatly deviated
from the actual values. Therefore, further investigations needs to be conducted in future work to
identify a more accurate forecast model. The observation of R coefficient values at consecutive stages of
ANN training, validation and testing confirmed the efficient performance of the proposed intelligent
filtration and prediction module. The obtained quality of BOD estimation by ANN in comparison
to the quality of estimation obtained with the use of Kalman–Bucy filter shows the advantage of
the first method. To estimate the ANN reliability level, we also performed network sensitivity tests
by perturbing the BOD variable. The experiment has shown that the network output is sensitive
to random changes of BOD concentrations. The amount of error increase reached 35% when the
BOD concentrations has changed by 15%, while it reached only 6% when the BOD concentrations
has changed by 8%. The obtained results of simulation studies allow the formulation of the main
conclusion that it is possible to control the river aeration based on the measurements of particular
state coordinates and the use of estimation process that completes the “knowledge” concerning
unmeasured data. Although the comparison of ANN to the Kalman–Bucy filter shows the advantage
of the former, in order to strengthen the objectivity of the quality assessment of the proposed system
as a continuation of research, other indicators used in forecasting issues should be taken into account,
e.g., the Nash–Sutcliffe efficiency coefficient, the median absolute percentage error, or the Persistence
Index, recently proposed in works [11,14]. Another advantage of the proposed method concerns the
ability of the system to simulate virtual states of river ecological condition without the risk of disaster
in the actual subject. Of course, the ANN performance is limited by the range of the extrapolation
effect obtained while learning the neural network. Based on the studies and observations, the authors
state that it is possible to increase the accuracy of the adaptive BOD estimation mechanism. This effect
can be achieved by extending the estimation error horizon by selecting the appropriate size of the time
window. Information about the error rate history in the control system can increase the accuracy of the
change in the value of the gain factor. The monitoring and control of a particular river segment with
the proposed system will be significantly improved by expanding the monitoring infrastructure to the
river inflows. This research work has managed to integrate several analytical and modeling methods
that would prove to be useful for various institutions that are directly involved in the management of
Wislok river water quality in the Carpathian mountains in the south of Poland.
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2017; Volume 657.

52. Aniszewski, A. Mathematical modeling and practical verification of groundwater and contaminant transport
in a chosen natural aquifer. Acta Geophys. 2009, 57, 435–453.

53. Kloeden, P.E.; Lorenz, T. Pullback attractors of reaction-diffusion inclusions with space-dependent delay.
Discret. Contin. Dyn. Syst. Ser. B 2017, 22, 1909–1964.

54. Chen, X.; Lam, K.Y.; Lou, Y. Dynamics of a reaction-diffusion-advection model for two competing species.
Discret. Contin. Dyn. Syst. Ser. A 2012, 32, 3841–3859.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Introduction
	Methods
	Mathematical Model of Water Quality
	Models with Distributed Parameters
	Second Order Distributed Parameter Model

	Ordinary Differential Equations on Characteristics
	River State Estimation with Kalman–Bucy Filter
	Model of Feed-Forward Neural Network
	Artificial Neural Networks for Estimation Processes
	The Influence of Immeasurable State Coordinates on Optimal Object Control

	Results
	Conclusions
	References

